Evolution of coexisting density compensation strategies in the Maynard Smith and Slatkin equation

Florian Hartig, Tamara Münkemüller, Karin Johst, Ulf Dieckmann

http://www.ufz.de/index.php?en=10623
Introduction: Niches, coexistence mechanisms and the paradox of the plankton

► Classic picture: Competitive exclusion -> Niche partitioning

► Problem: Often, several species appear to coexist within one niche
 ► Hutchinson ‘61 Paradox of the plankton
 ► Hubbel ‘01 - UNTB

► A number of equalizing/stabilizing mechanisms exist which are based on the spatio-temporal dynamics of resources / competitors
 ► E.g. storage effect, colonization-competition trade-offs

► Relative Nonlinearity of Competition
 ► Different relative competitive strength at different resource levels
 ► Huisman ‘99, Nature
The Maynard Smith-Slatkin model

Graphic from http://spongebob-plankton.tripod.com

Florian Hartig
Department of Ecological Modelling
The Maynard Smith-Slatkin model

\[N(t+1) = \frac{r \cdot N(t)}{1 + (r - 1)(N(t)/K)^b} \]

- Discrete time steps
 - Non-overlapping generations

- 2 free parameters r and b
 - Both act positively on growth
 - \(r/b \) combination determines shape
Properties of the MMS model

- For large r/b chaotic population dynamics
 - The larger r/b the stronger the fluctuations

- r/b determines reproductive success in fluctuating environments. Larger b mean
 - Higher average growth at low fluctuations
 - Lower average growth at high fluctuations

- Self-induced fluctuations and fluctuation-dependent growth may stabilize the coexistence of 2 or more different b/r strategies!

Münkemüller, T.; Bugmann, H. & Johst, K.
Hutchinson revisited: Patterns of density regulation and the coexistence of strong competitors
Journal of Theoretical Biology, 2009, 259, 109-117
Questions:

► Will evolution lead to coexisting strategies in the MMS equation?

► Are these coexisting strategies evolutionary stable?
Methods: Model description

► Individual-based

► Each individual has its own r/b strategy and reproduces according to the MMS equation

\[N(t+1) = \frac{r \cdot N(t)}{1 + (r - 1)(N(t)/K)^b} \]

► Scheduling within one generation
 ► Reproduction (Poisson-distributed)
 ► Mutation of b (r, …) (small probability, normally distributed mutation)
 ► External disturbance (uniform)

Graphic from http://spongebob-plankton.tripod.com
Results: Coexistence and invasibility

Confirms the results of:
Münkemüller, T.; Bugmann, H. & Johst, K.
Hutchinson revisited: Patterns of density regulation and the coexistence of strong competitors
Journal of Theoretical Biology, 2009, 259, 109-117
Conclusion:
- Existence of coexisting b-strategies in the MMS model

Question:
- b subject to evolution, what is going to happen?
Evolution of b: ESS and the influence of disturbance

- Only one ESS
- Depends on r and on the external disturbance
Other factors tested:

- Coevolution r/b
 - One ESS
 - Left skewed shape favored

- Intraspecific < interspecific competition
- Evolution of intraspecific competition and niches
 - At no costs, intraspecific competition is always disfavored
Conclusions

► For populations development governed by the MMS equation, relative nonlinearity of competition acts as stabilizing coexistence mechanism

► Coexistence only an intermediate state during evolution:
 ► Evolution towards one single ESS
 ► Depends on the disturbance regime
 ► Evolution is slow because of the stabilizing effect

► Possibilities for evolution to coexisting strategies:
 ► Physiological trade-offs
 ► Conjecture: Shifts in the disturbance regime on larger time/spatial scales may be sufficient to maintain coexistence